شناسایی تقلب در کارت های بانکی با استفاده از شبکه های عصبی مصنوعی
Authors
abstract
هرچند آمار دقیقی از تقلب در کارت های بانکی معتبرِ کشور وجود ندارد، به نظر می رسد تقلب در کارت های بانکی روند رو به رشدی دارد و می تواند در آیندۀ نهچندان دور به یکی از معضلات سیستم بانکی کشور تبدیل شود. متأسفانه هنوز در کشورمان تحقیقات مناسبی در این خصوص صورت نگرفته و سیستم بانکی مدل یا مدل هایی کارا نیاز دارد که بتواند امنیت استفاده از کارت های بانکی را تضمین کند. لذا در این پژوهش، پس از شناسایی انواع تقلب های رایج در زمینۀ کارت های بانکی و شبیه سازی تراکنش های متقلبانه، با بهره گیری از شبکه های عصبی مصنوعی، مدلی برای طبقه بندی تراکنش ها به تراکنش های سالم و متقلبانه (مشکوک به تقلب) ایجاد شد. این مدل که از نوع شبکۀ عصبی پرسپترون چندلایه است، علاوهبر اینکه مبتنی بر سیستم بانکی داخلی کشور است، توانسته است با دقت 99درصد، عملکرد نسبتاً خوبی در طبقه بندی مزبور داشته باشد. با مقایسۀ معیارهای ارزیابی عملکرد محاسبهشدۀ این پژوهش و نتایج مدل های ارائهشده در مطالعات دیگر، مشخص شد معیارهای ارزیابی عملکرد پژوهش حاضر از روایی و پایایی مناسبی برخوردارند
similar resources
شناسایی تقلب در کارتهای بانکی با استفاده از شبکههای عصبی مصنوعی
هرچند آمار دقیقی از تقلب در کارتهای بانکی معتبرِ کشور وجود ندارد، به نظر میرسد تقلب در کارتهای بانکی روند رو به رشدی دارد و میتواند در آیندۀ نهچندان دور به یکی از معضلات سیستم بانکی کشور تبدیل شود. متأسفانه هنوز در کشورمان تحقیقات مناسبی در این خصوص صورت نگرفته و سیستم بانکی مدل یا مدلهایی کارا نیاز دارد که بتواند امنیت استفاده از کارتهای بانکی را تضمین کند. لذا در این پژوهش، پس از شناسای...
full textشناسایی خسارت در سازه با استفاده از پردازش سیگنال و شبکه های عصبی مصنوعی
در طول دو دهه اخیر بحث شناسایی خرابی و پایش سلامت سازه ها با هدف کاهش هزینه نگهداری و بهبود ایمنی و قابلیت اطمینان سازه مورد توجه قرار گرفته است. پس از وقوع زلزله با توجه به وضعیت بحرانی موجود و تعداد زیاد سازه های بلند مرتبه امکان مراجعه حضوری به تک تک سازه ها وجود ندارد. این موضوع اهمیت توسعه روش هایی که بتوانند تنها با استفاده از سیگنال های پاسخ ثبت شده در مدت زمان زلزله، خسارت ایجاد شده در ...
full textتشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی
وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را بهصورت تغییر در میزان الکترون، چگالی یونها، میدانهای الکتریکی و مغناطیسی این لایه نشان میدهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایههای لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید بهعنوان پیشنشانگر شناخته میشود...
full textتخمین کریپ کمپلینس مخلوط های آسفالتی با استفاده از شبکه های عصبی مصنوعی
یکی از آزمایشهای اساسی در فرایند طراحی روسازیهای انعطافپذیر به روش مکانیستیک- تجربی در آشتو 2002، آزمایش کریپ کمپلینس است. در این تحقیق مدلی جدید برای تخمین کریپ کمپلینس مخلوطهای آسفالتی با استفاده از شبکههای عصبی مصنوعی پرسپترون چند لایه، با تکنیک آموزش لونبرگ- مارکوات، با توان تعمیم پذیریR=0.949 ، با موفقیت ارائه شده است. این مدل 14 ورودی شامل درصدهای عبوری انتخابی از منحنی دانهبندی ...
full textدرجه بندی زعفران بر اساس ویژگی های ظاهری با استفاده از شبکه های عصبی مصنوعی
زعفران بهعنوان یک کالای تجاری مهم در کشور بهشمار میآید و توجه به مکانیزه کردن آن از مرحله تولید تا بستهبندی اهمیت زیادی دارد. در بدو ورود زعفران به فرایند کیفی سنجی در آزمایشگاه ، ارزیابی اولیه بر اساس مشخصات ظاهری زعفران توسط شخص خبره انجام میشود. لیکن بروز خطای انسانی در تشخیص کیفیت زعفران بر مبنای ویژگیهای ظاهری آن امری اجتنابناپذیر است؛ استفاده از تکنیکهای مبتنی بر هوش مصنوعی میت...
full textمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textMy Resources
Save resource for easier access later
Journal title:
فصلنامه علمی-پژوهشی مدیریت فناوری اطلاعاتPublisher: دانشکده مدیریت دانشگاه تهران
ISSN 2008-5893
volume 6
issue 4 2015
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023